# 算法 - 其它

# 汉诺塔


有三个柱子,分别为 from、buffer、to。需要将 from 上的圆盘全部移动到 to 上,并且要保证小圆盘始终在大圆盘上。

这是一个经典的递归问题,分为三步求解:

① 将 n-1 个圆盘从 from -> buffer


② 将 1 个圆盘从 from -> to


③ 将 n-1 个圆盘从 buffer -> to


如果只有一个圆盘,那么只需要进行一次移动操作。

从上面的讨论可以知道,an = 2 * an-1 + 1,显然 an = 2n - 1,n 个圆盘需要移动 2n - 1 次。

public class Hanoi {
    public static void move(int n, String from, String buffer, String to) {
        if (n == 1) {
            System.out.println("from " + from + " to " + to);
            return;
        }
        move(n - 1, from, to, buffer);
        move(1, from, buffer, to);
        move(n - 1, buffer, from, to);
    }

    public static void main(String[] args) {
        Hanoi.move(3, "H1", "H2", "H3");
    }
}
from H1 to H3
from H1 to H2
from H3 to H2
from H1 to H3
from H2 to H1
from H2 to H3
from H1 to H3

# 哈夫曼编码

根据数据出现的频率对数据进行编码,从而压缩原始数据。

例如对于一个文本文件,其中各种字符出现的次数如下:

  • a : 10
  • b : 20
  • c : 40
  • d : 80

可以将每种字符转换成二进制编码,例如将 a 转换为 00,b 转换为 01,c 转换为 10,d 转换为 11。这是最简单的一种编码方式,没有考虑各个字符的权值(出现频率)。而哈夫曼编码采用了贪心策略,使出现频率最高的字符的编码最短,从而保证整体的编码长度最短。

首先生成一颗哈夫曼树,每次生成过程中选取频率最少的两个节点,生成一个新节点作为它们的父节点,并且新节点的频率为两个节点的和。选取频率最少的原因是,生成过程使得先选取的节点位于树的更低层,那么需要的编码长度更长,频率更少可以使得总编码长度更少。

生成编码时,从根节点出发,向左遍历则添加二进制位 0,向右则添加二进制位 1,直到遍历到叶子节点,叶子节点代表的字符的编码就是这个路径编码。


public class Huffman {

    private class Node implements Comparable<Node> {
        char ch;
        int freq;
        boolean isLeaf;
        Node left, right;

        public Node(char ch, int freq) {
            this.ch = ch;
            this.freq = freq;
            isLeaf = true;
        }

        public Node(Node left, Node right, int freq) {
            this.left = left;
            this.right = right;
            this.freq = freq;
            isLeaf = false;
        }

        @Override
        public int compareTo(Node o) {
            return this.freq - o.freq;
        }
    }

    public Map<Character, String> encode(Map<Character, Integer> frequencyForChar) {
        PriorityQueue<Node> priorityQueue = new PriorityQueue<>();
        for (Character c : frequencyForChar.keySet()) {
            priorityQueue.add(new Node(c, frequencyForChar.get(c)));
        }
        while (priorityQueue.size() != 1) {
            Node node1 = priorityQueue.poll();
            Node node2 = priorityQueue.poll();
            priorityQueue.add(new Node(node1, node2, node1.freq + node2.freq));
        }
        return encode(priorityQueue.poll());
    }

    private Map<Character, String> encode(Node root) {
        Map<Character, String> encodingForChar = new HashMap<>();
        encode(root, "", encodingForChar);
        return encodingForChar;
    }

    private void encode(Node node, String encoding, Map<Character, String> encodingForChar) {
        if (node.isLeaf) {
            encodingForChar.put(node.ch, encoding);
            return;
        }
        encode(node.left, encoding + '0', encodingForChar);
        encode(node.right, encoding + '1', encodingForChar);
    }
}